47 research outputs found

    An almost sure ergodic theorem for quasistatic dynamical systems

    Full text link
    We prove almost sure ergodic theorems for a class of systems called quasistatic dynamical systems. These results are needed, because the usual theorem due to Birkhoff does not apply in the absence of invariant measures. We also introduce the concept of a physical family of measures for a quasistatic dynamical system. These objects manifest themselves, for instance, in numerical experiments. We then verify the conditions of the theorems and identify physical families of measures for two concrete models, quasistatic expanding systems and quasistatic dispersing billiards.Comment: 15 page

    Quasistatic dynamical systems

    Full text link
    We introduce the notion of a quasistatic dynamical system, which generalizes that of an ordinary dynamical system. Quasistatic dynamical systems are inspired by the namesake processes in thermodynamics, which are idealized processes where the observed system transforms (infinitesimally) slowly due to external influence, tracing out a continuous path of thermodynamic equilibria over an (infinitely) long time span. Time-evolution of states under a quasistatic dynamical system is entirely deterministic, but choosing the initial state randomly renders the process a stochastic one. In the prototypical setting where the time-evolution is specified by strongly chaotic maps on the circle, we obtain a description of the statistical behaviour as a stochastic diffusion process, under surprisingly mild conditions on the initial distribution, by solving a well-posed martingale problem. We also consider various admissible ways of centering the process, with the curious conclusion that the "obvious" centering suggested by the initial distribution sometimes fails to yield the expected diffusion.Comment: 40 page

    Quenched Normal Approximation for Random Sequences of Transformations

    Get PDF
    We study random compositions of transformations having certain uniform fiberwise properties and prove bounds which in combination with other results yield a quenched central limit theorem equipped with a convergence rate, also in the multivariate case, assuming fiberwise centering. For the most part we work with non-stationary randomness and non-invariant, non-product measures. Independently, we believe our work sheds light on the mechanisms that make quenched central limit theorems work, by dissecting the problem into three separate parts.Peer reviewe
    corecore